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Abstract

A branching behavior of sandwich panels with a transversely ¯exible (``soft'') core subjected to longitudinal
external forces is investigated using a geometrically nonlinear analysis. The study is based on a closed form high-

order theory that allows for a general analysis without resort to the classical mode decoupling approach. The
governing equations and the associated boundary conditions are presented, and the appropriate boundary
conditions resulting from using edge beams are derived. An e�cient path-following algorithm based on the quasi-

Newton global framework has been developed. It provides a powerful numerical tool for determining the branching
behavior which consists of a sequence of equilibrium states of the sandwich panel as a function of the external
loading factor. Application of the general numerical analysis to the ``soft'' core sandwich panels reveals that they

possess a complicated branching behavior with limit points and secondary bifurcations. It is shown that the
wrinkling of the face sheets does not necessarily identify the buckling of the panel as a whole and in many cases it is
a result of the nonlinear response. The localized buckling modes are found in some cases to be the critical ones
rather than the usual sinusoidal buckling patterns. It is further shown that variations in the geometry, boundary

conditions and mechanical properties of the panel constituents can lead to a qualitative shift in its nonlinear
response from an imperfection-sensitive, ``shell-wise'' response, to an imperfection-nonsensitive, ``plate-wise''
one. 7 2000 Elsevier Science Ltd. All rights reserved.
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Secondary bifurcations; Limit points

1. Introduction

The behavior of sandwich panels with a transversely ¯exible (``soft'') core is that of a compound
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structure rather than an ordinary response of solid beams/panels. Such a structure combines three
di�erent layers into a single entity wherein the material properties of the core layer, especially its
¯exibility in the vertical direction, have a pronounced e�ect on its behavior. This ¯exibility leads to local
and localized displacement patterns which can interact with an overall mode of the sandwich panel. The
local response refers to a deformation pattern that is located at the face sheets only, such as wrinkling,
whereas the localized response implies a deformation pattern which is con®ned to some zone along the
face sheet. Thus, the buckling response of sandwich panels as a result of external longitudinal loads may
be of the global, local or localized type, and their postbuckling response is much more complicated and
complex than that of the ordinary panels. Nonlinear phenomena such as snap-through response,
interactive mode buckling behavior as well as secondary bifurcations may occur and precautions must
be taken when designing sandwich panels with a ``soft'' core.

The development of the theory of sandwich structures followed for long the classical approaches
presented in detail in Allen (1969), Plantema (1966) and Zenkert (1995). Some authors have shown
through experiments that there are considerable distinctions between the buckling response of sandwich
panels with a honeycomb core and ordinary panels (see, for example, Harris and Nordby, 1969). The
low mechanical properties of the core with respect to the facings suggested the use of elastic foundation
techniques to analyze the local buckling response of the sandwich panel. At the same time, the global
response was predicted by Euler's column formulas as a function of the facings mechanical properties
only; occasionally, the contribution of the core shear rigidity was also included. Thus, the analysis and
design of the sandwich panels is based on decoupling of the local and global responses while ignoring
the interaction between them. As a result the critical design loads are based on the minimum between
the overall and the local (wrinkling) buckling loads.

The local buckling response has been investigated by many researchers using various types of elastic
foundation along with presumed sinusoidal modes (see Zenkert, 1995). Goodier and Hsu (1954) dealt
with buckling of an in®nitely long sandwich plate and showed that the nonsinusoidal modes, in which
the deformation is con®ned to end zones of the plate, may occur with critical loads that are about one-
half of those predicted on the basis of the sinusoidal mode. Moreover, the classical approaches use
nonrealistic boundary conditions which are incompatible with the governing di�erential equations (i.e.
the number of boundary conditions does not match an order of the di�erential equations) as indicated
by Benson and Mayers (1967). They had justi®ed that the classical treatment of the boundary conditions
led to an incorrect performance assessment of the sandwich structures relative to the ordinary ones in
practical applications. Another serious drawback of the classical approach consists in neglecting the
in¯uence of the transverse normal stresses that can be justi®ed for the metallic incompressible cores, but
is incorrect for the ``soft'' cores. As the modulus of elasticity of the core layer reduces with respect to
the faces, the section of the sandwich becomes more ¯exible in the transverse direction giving rise to
nonequal vertical de¯ections of the face sheets as well as to the appreciable peeling (transverse normal)
and shear stresses in the core itself and at the face±core interface layers (see Frostig et al., 1992). In such
circumstances the local and overall response modes essentially interact (see Hunt et al., 1988). Therefore,
the decoupling of modes approach will lead to an absolutely inadequate simulation of the real behavior
of sandwich panels. The e�ects of the peeling stresses have been incorporated into the sandwich analysis
by very few authors (Benson and Mayers, 1967; Pearce and Webber, 1972) who, however, resorted to
decoupling of the buckling response into symmetric and antisymmetric patterns and used the harmonic
hypotheses ignoring thereby the interaction between the buckling modes. Furthermore, these
formulations as before was incapable of adequate treatment of the real boundary conditions which are
imposed on the upper and the lower faces at the same section of the panel. Hunt et al. (1988) had found
the interactive response of the sandwich strut to be strongly unstable by the use of a simple mechanism
that replaced the core with Winkler-type springs.

Frostig et al. (1992) and Frostig and Baruch (1993) proposed a re®ned closed form high-order
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sandwich panel theory (HSAPT) which allows for analyzing a general sandwich lay-out with a ``soft''
core and is subjected to various types of external loading and boundary conditions including di�erent
conditions at the face sheets at the same section. The theory enables a general solution to be determined,
i.e. the analysis does not separate the complicated sandwich response into isolated problems
corresponding to the global and local modes. As a result the interactive mode response of an arbitrary
complexity is automatically considered. The ®rst reference deals with the general bending of a sandwich
panel (Frostig et al., 1992) whereas the second one (Frostig and Baruch, 1993) is limited only to
buckling of such structures and uses the linearized form of the geometrically nonlinear formulation
derived to study the linear buckling response of the simply-supported sandwich panel with a membrane
prebuckling stage. A photoelastic investigation conducted by Thomsen and Frostig (1997) demonstrated
the close agreement between the experimental stress ®eld, induced by the application of highly
concentrated external loads or point supports with that determined by the HSAPT. Sokolinsky and
Frostig (1997, 1998) have applied the HSAPT to study the interactive buckling and nonlinear response
of the sandwich panels with a ``soft'' core and arbitrary supports subjected to nonmembrane regime in
the prebuckling stage.

The present work uses the HSAPT to study the geometrically nonlinear general behavior of
longitudinally compressed sandwich panels. The assumptions used are as follows: the panel constituents
behavior is that of linear elastic materials; the face sheets, modeled by the ordinary panels (neglecting
shear strains), are subjected to the intermediate class of deformations, i.e. large deformations, moderate
rotations and small strains (see Novozhilov, 1953; Brush and Almroth, 1975); the core layer is assumed
to be an antiplane medium with small deformations. Moreover, the height of a ``soft'' core is allowed to
change under loading whereas its section plane does not remain plane. Since the modulus of elasticity
and the ¯exural rigidity of the transversely ¯exible core are about three and two orders smaller than
those of the faces, its longitudinal rigidity is neglected (see Frostig et al., 1992). The interface layers are
assumed to resist shear and peeling stresses and provide full bonding between the core and face layers.

The nonlinear governing equilibrium equations and the associated boundary conditions are presented
in the next chapter, along with the derivation of the appropriate boundary conditions for a panel
supported by the edge beams. Next, the nonlinear numerical algorithm is described. Numerical examples
of some typical simply-supported and cantilever panels with a ``soft'' core are analyzed and discussed,
and conclusions are drawn.

2. Nonlinear equilibrium equations

The governing nonlinear di�erential equations for the sandwich panel with the ``soft'' core, and their
associated boundary and continuity conditions as well as the core ®elds appear in Frostig and Baruch
(1993) and are presented here for completeness.

The governing equations read:

Nxxt, x � bt � 0 �1�

Nxxb, x ÿ bt � 0 �2�

Mxxt, xx �
ÿ
Nxxtwt, x

�
,x
�bEc

c
�wb ÿ wt � � b�c� dt�

2
t,x � ÿqt �3�
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Mxxb, xx �
ÿ
Nxxbwb, x

�
,x
ÿbEc

c
�wb ÿ wt � � b�c� db�

2
t,x � ÿqb �4�

uot ÿ uob ÿ c� dt
2

wt, x ÿ c� db
2

wb, x ÿ c3

12Ec
t,xx � c

Gc
t � 0 �5�

where the unknowns, uot, uob, wt, wb and t, are the horizontal and the vertical displacements of the
centroid line of the upper and the lower faces, and the shear stress in the core, respectively (see Fig. 1);
� �,x denotes the derivative with respect to x, whereby x is implied any of three axes, xt, xb or
xc�xt � xb � xc � x�; b, c, dt, and db are geometrical characteristics of a panel section denoting the
width of the section, the height of the core, and the thicknesses of the upper and the lower face,
respectively (see Fig. 1(a)); Gc, Ec are the shear and the elastic moduli of the core; qt, qb are external
distributed vertical forces applied to the upper and the lower face, respectively; Nxxt, Nxxb, Mxxt, and
Mxxb are internal resultants, namely, the in-plane longitudinal forces and the bending moments in the
upper and the lower face, respectively (see Fig. 1(b)).

The boundary conditions for the upper and the lower facings at the left �x � 0� and the right �x � L�
edges are given below.

At the faces sheets �i � t, b):

aNxxi � Ni or uoi � �uoi �6�

ÿaMxxi �Mi or wi, x � �wi, x �7�

a

�
Mxxi, x �Nxxiwi, x � bdi

2
t

�
� Pi or wi � �wi �8�

At the core:

Fig. 1. Geometry (a) and internal resultants (b) of a sandwich panel.
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t � 0 or wc�x, zc � � �wc�zc� �9�
where L is the length of the panel; a � ÿ1 for x � 0 and a � 1 for x � L; Ni, Pi and Mi are the
horizontal and vertical external loads, and the external moments, respectively, applied at the faces; wc is
the unknown function of two variables, x and zc, denoting the vertical displacement of an arbitrary
point of the core; uoi, wi, and wi, x are the speci®ed values of the longitudinal and vertical
displacements, and the angles of rotation at the faces boundaries, respectively; wc are the speci®ed
vertical displacements through the thickness of the core edges.

The core ®elds in terms of the vertical stresses, and horizontal and vertical displacements, respectively,
read:

szz�xc, zc � � Ec

c
�wb ÿ wt� �

�
c

2
ÿ zc

�
t,x �10�

uc�xc, zc � � uot �
�
z2c
2c
ÿ zc ÿ dt

2

�
wt, x ÿ z2c

2c
wb, x ÿ z2c �3cÿ 2zc�

12Ec
t,xx � zc

Gc
t �11�

wc�xc, zc � �
�
1ÿ zc

c

�
wt � zc

c
wb ÿ zc�zc ÿ c�

2Ec
t,x �12�

It should be emphasized that these stresses and deformation ®elds are the result of a closed form
solution of the partial di�erential equations of equilibrium for the core. The term panel here applies
either to a narrow beam or a wide beam (a plate in cylindrical bending). In case the face sheets are
made of an isotropic material, the cylindrical bending of wide beams is accounted for by multiplying the
Young's modulus of each face sheet by 1=�1ÿ n2�, where n is the Poisson's ratio of the face sheet (Allen,
1969).

The boundary conditions for the special case where the sandwich panels are supported by edge beams
are presented. An edge beam is a rigid diaphragm at the ends of the sandwich panel, where the support
point A connecting the panel to the supporting devices may be located somewhere between the height of
the panel rather than at the ends of the faces, see Fig. 2(a). Such supporting systems are widely used in
practical applications to simplify the connection between the faces and the core of the sandwich panels
with the supporting member of the panel.

The presence of an edge beam at the end of the sandwich panel yields:

wt � wb �13�

wt, x � wb, x �14�

wt, x � uot ÿ uob
zt � zb

�15�

wt � wc�x � 0, zc � �16�
where zt � zb � c� dt=2� db=2, see Fig. 2(a). Note that the above relationships exist regardless of the
support type at the point A. The displacements and rotations at point A, see Figs. 2(c) and (d), can be
expressed using the displacements and rotations of the faces as follows:

wA � wt �17�
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wA, x � wt, x �18�

uA � uotzb � uobzt
zt � zb

�19�

where uA, wA and wA, x are the displacements in the horizontal and vertical directions and the rotation,
respectively, at the supporting point A. In order to derive the proper relations between local boundary
conditions at the faces and the global ones at the point A, the expression for the internal potential
energy is retained as given in Frostig and Baruch (1993), while the ®rst variation of the external

Fig. 2. Edge beam support: (a) Geometry; (b) Reactions at point A; (c) Displacement pattern of a hinge support; (d) Displacement

pattern of a roller support.
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potential energy presented there must be supplemented with

dVBC � ÿ
ÿ
NGduA �MGdwA, x � PGdwA

� �20�

here VBC is the part of the external potential energy related to the left end supported by the edge beam;
NG, PG and MG are the global external concentrated forces in the horizontal and vertical directions, and
the concentrated moment at the point A, see Fig. 2(b). Thus the appropriate boundary terms from the
expression for the ®rst variation of the total potential read:

d�U� V�BC� ÿNxxtduot ÿNxxbduob �Mxxtdwt, x �Mxxbdwb, x ÿ
�
Mxxt, x �Nxxtwt, x

� bdt
2
t

�
dwt ÿ

�
Mxxb, x �Nxxbwb, x � bdt

2
t

�
dwb ÿ

�c
0

btdwc dzÿ ÿNGduA

�MGdwA, x � PGdwA

�
� 0 �21�

for the case when the edge beam is attached to the left end of the panel. A similar expression can be
determined also for the right edge. Substituting Eqs. (17)±(19) into the last equation yields:

a�Nxxt �Nxxb � � NG or uA � uG �22�

a�ztNxxt ÿ zbNxxb ÿMxxt ÿMxxb � �MG or wA, x � wG, x �23�

a
�
Mxxt, x �Nxxtwt, x �Mxxb, x �Nxxbwb, x � b�zt � zb �t

� � PG or wA � wG �24�

t,x � 0 �25�
where uG, wG, and wG, x are the speci®ed values of the deformations at the supporting point A. Thus,
Eqs. (13)±(15) along with Eqs. (22)±(25) constitute the boundary conditions for the sandwich panel
supported by the edge beams, where Eqs. (13)±(15) and (22)±(24) are the face conditions (compare with
Eqs. (6)±(8)), and Eq. (25) is the core condition (compare with Eq. (9)). Note particularly that Eq. (25)
is a straight consequence of the requirement,

d
�c
0

wc dz � 0, �26�

stemming from Eq. (21) �t 6�0 in this case), Eq. (12) for the vertical displacements of the core as well as
Eqs. (13) and (16).

3. Nonlinear numerical analysis

The nonlinear governing di�erential equations (1)±(5) and the corresponding boundary conditions,
(6)±(9) can be written as

L�v� � F �27�
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where L is the nonlinear di�erential operator; v � fuot, uob, wt, wb, tgT is the vector function of the
unknowns; F is the vector function of the external loading; and the symbol T denotes vector transpose.
The exact continuous formulation of Eq. (27) is approximated by ®nite di�erences and it reads:

G�u,l� � 0 �28�

where G is the nonlinear algebraic operator from Rn � R to Rn in a ®nite dimensional space of size n; u
is the n-dimensional vector of the unknowns; and l is a load-level parameter that multiplies a ®xed
external loading vector, Gl, to yield the vector of external loads q at the current loading step.

It is emphasized that the choice of the type of discretization has been inspired by the lack of a ®nite
element for the sandwich panel with a ``soft'' core in the library of modern ®nite element packages, and
the presence of the highly stressed zones near the concentrated loads and in the vicinity of the support
points. The complicated response at these regions is smeared by the ®nite elements (see Frostig and
Baruch, 1990).

The system of nonlinear algebraic equations in Eq. (28) de®nes the equilibrium state of the sandwich
panel. The equilibrium state is the point in �u, l� space while the equilibrium branch is a connected
curve consisting of such points. Evaluation of the nonlinear equilibrium path for the sandwich panel
with a ``soft'' core is the main goal of the present work. The basic principles for an automatic path-
following procedure can be found, for example, in Cris®eld (1991, 1997), Keller (1987) and Seydel
(1988). Note that the mixed formulation of the problem along with the chosen approximation technique
require more general continuation procedures than those given in Cris®eld (1997).

Choosing the load factor l as the parameter of the equilibrium branch leads to the natural parameter
continuation procedure for computing the solution curves of Eq. (28). Starting from the unloaded state
of the structure the continuation procedure advances from one equilibrium state to another using the
predictor±corrector technique. The path-following procedure in the present work implements the Euler
tangential predictor

Äu�l1 � � u0 � �l1 ÿ l0�du0

dl
�29�

with

du�l0�
dl

� du0

dl
� ÿ�Gu �ÿ1Gl, �30�

where Äu � Äu�l1� is the predictor value of the solution vector u1 at the loading step l1; �u0, l0� is any
point on the equilibrium path; Gu�u0, l0� is the Jacobian matrix; and Gl is the vector of the partial
derivatives of G with respect to the load parameter l that is numerically equal to the ®xed vector
function of external loading (see Eq. (28)). The corrector step is based on the quasi-Newton global
framework with line searches (see Dennis and Schnabel, 1983). This procedure, however, fails to trace
the curve in the vicinity of the limit (turning) points. To permit the solution of such circumstances the
natural parameter continuation must be abandoned in favor of some other type of parameterization
strategy. Here the scalar normalization proposed by Keller (1977, 1987) has been used:

N�u, l, Ds� � duT
0

ds
�uÿ u0� � dl0

ds
�lÿ l0� ÿ Ds � 0 �31�

where �duT
0

ds ,
dl0
ds � is the unit tangent to the equilibrium path at the point �u0, l0); Ds is the arclength

distance from the point �u0, l0). Combining Eqs. (28) and (31) produces an extended system of n� 1
scalar equations for the n� 1 unknowns �u, l):
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�
G�u, l�
N�u, l, Ds�

�
� 0 �32�

Computing the solution curve with the aid of the last system is known as the pseudoarclength
continuation procedure (Keller, 1987). Then the predictor appears as

Äu�s� � u0 � Ds
du0

ds
, �33�

~l�s� � l0 � Ds
dl0
ds

�34�

As in the case of the natural parameter continuation, the corrector step is accomplished with the aid of
the global quasi-Newton framework mentioned before. It is noted that the Jacobian of the augmented
system, Eq. (32), remains nonsingular along the regular path even though the value of Gu may be
singular (as is the case at the limit points).

The computation of the tangent � duT
0

ds ,
dl0
ds � is an important part of the analysis and it de®nes the

proper direction of advance along the path. The tangent vectors must satisfy the following conditions
(see Keller, 1987):

Gu
du0

ds
� Gl

dl0
ds
� 0, �35�





du0

ds





2

�
����dl0ds

����2� 1 �36�

with

du0

ds
� ajjj0 and

dl0
ds
� a �37�

The unknowns jjj0 and a are found through substitution of Eq. (37) into Eqs. (35) and (36) and they
read:

Gujjj0 � ÿGl and a � 21���������������������
1� kjjj0k2

p �38�

In order to preserve the orientation of the path the sign in Eq. (38) is chosen to satisfy the inequality

a

�
duT
ÿ1

ds
j0 �

dlÿ1
ds

�
> 0 �39�

here �duT
ÿ1

ds , dlÿ1
ds � is the preceding tangent vector.

The success of the numerical computations depends highly on a step length control. An e�cient step
control should combine su�ciently fast advance along the curve with reliable location of branching
points (bifurcation and limit points). The latter is extremely important in the case of the sandwich
structures under consideration where the branching points are often closely spaced (see below).
Therefore, the present analysis uses additional devices that control the step length besides the usual
restrictions on its maximum and minimum values and dependence on number of iterations for
convergence at the previous step. The automatic choice of the method (natural parameter continuation
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or pseudoarclength continuation) used here depends on the number of iterations n required for
convergence at the previous step, and the ratio r between the values of the derivatives dl=ds at the
current point and the starting point of the path. In addition, the arclength technique can be chosen from
the beginning. The natural parameter continuation is applied when jrjr0:7 and nR5, otherwise the
pseudoarclength continuation is used. To ensure the proper location of the branching points, the ratio r
is introduced:

�r �
dlÿ1

ds
ÿ dl0

ds
dlÿ1

ds

�40�

where ÿ1 and 0 denote the previous and the current points, respectively. As long as the value of r
satis®es the inequality

�rbR
�� �r��R �rt,

�
�rb, �rt

� � R, �41�

the increment of the step length is given by

D0 � g2
4ÿn
3 Dÿ1, g 2 R, �42�

where Dÿ1 and D0 are the increments of the governing parameter (load factor or arclength) at the
previous and the current point, respectively; g is a constant. A reduction in the ratio jrj below the lower
bound rb leads to doubling of the arclength distance, Ds, or increasing of the load factor by 1:3Dÿ1: An
increase in jrj beyond the upper bound rt, on the other hand, causes the solution �u0, l0� being
currently determined to be disregarded, and the reduced value of the increment D to appear as:

D0 � �g�� �r��Dÿ1, �g 2 R �43�

Furthermore, if the minimum value of the arclength that is prescribed a priori interferes with the
reduction of D0 expressed by the previous equation, it is halved until either Eq. (41) is satis®ed or the
arclength distance Ds is reduced below some control limit after which the computations are abnormally
terminated. The use of the two lower bounds on the arclength distance has been adopted in order to
prevent the premature slipping of Ds into small values, which slows down the advance along the path, as
well as setting nonjusti®ably high lower bound. It is noted that the value of the constant g used in the
numerical computations is g � 0:65; the values of the parameters rb, rt and g generally depend on the
value of dl0=ds and they read

�rb � 0:007, �rt � 0:3, �g � 0:15 for
dl0
ds

r10ÿ4, �44�

and

�rb � 0:007, �rt � 0:9, �g � 0:45 for
dl0
ds

< 10ÿ4 �45�

The change of the determinant sign during continuation along the equilibrium path is used as the
branching test function (see Keller, 1987 and Seydel, 1988). After the branching point is straddled, its
value is determined by the bisection procedure. The test for a limit point or bifurcation at each
singularity reads (see Keller, 1977):
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cccTGl

�
10 for bifurcation

6�0 for a limit point
�46�

where ccc is the left null vector of the Jacobian, Gu, at the singular point, whereas Gl is the ®xed vector
of the external loading.

Switching branches at bifurcation points is performed using the method proposed by (Keller (1977,
1987)) which re¯ects the idea that if one branch through the simple bifurcation point is already
computed, the tangent �du

ds ,
dl
ds � at the bifurcation point on this branch is known. The solution on the

emanating branch is sought with the aid of the �n� 1)-dimensional vector zzz which is ``orthogonal'' to
the known tangent and lies in the plane spanned by vectors �fff, 0� and �fff0, 1), where fff is the right null
vector of the Jacobian at the singular point, G0

u and vector fff0 is de®ned by the system:

Gu
0fff0 � ÿGl

cccTfff0 � 0 �47�
The predictor is obtained by summing the vector �u�, l�), denoting the bifurcation point, with zzz: Then
the quasi-Newton procedure is used to solve the system similar to that of Eq. (32) with the scalar
normalization N substituted by

N�u, l� � zzzTd, d 2 Rn�1 �48�
The solution on the bifurcating branch is obtained by adding the vector d to the predictor. Once the
®rst point on the bifurcating branch has been evaluated, the whole branch is computed in the same way
as described above. Reversing the direction of the constructed orthogonal vector the other part of the
bifurcating branch is obtained.

The equilibrium states which are close to the bifurcating branches can also be determined using the
imperfection analysis as described in Brush and Almroth (1975) (in the mathematical literature it is also
known as ``perturbed bifurcation'' method; see Keller, 1987). Giving the structure a small initial
imperfection, the equilibrium branch can be evaluated bypassing the bifurcation point. The smaller the
initial imperfection, the closer the ``perturbed'' equilibrium path to the bifurcating branch.

The nonlinear procedure outlined above has been implemented in a computer code ``FSAN'' developed
in the ``MATLAB'' software environment (MATLAB, 1996).

4. Numerical study and discussions

A numerical study has been conducted on some typical simply-supported and cantilever sandwich
panel con®gurations. The simply-supported lay-out adopted is the one that appears in Frostig and
Baruch (1993). It consists of two face sheets metallic or symmetric composite laminated and a ``soft''
core made of foam or a low strength honeycomb and serves as a basic con®guration. The parameters of
the basic con®guration are varied in the subsequent cases. The results of the numerical analysis are
presented in the form of the branching (response) diagrams at selected sections along the panel span,
which are supplemented by the displacement patterns for a better insight into the nonlinear behavior.
The in¯uence of the initial imperfections on the nonlinear sandwich response is also examined in all
examples. The branching points are assigned numbers and are marked by bullets. The bifurcating
branches are denoted by the uppercase letter ``B'' followed by one-digit or two-digit numbers as follows:
in the case with one bifurcating branch a one-digit number denoting one of the two parts of the same
branch emanating from a bifurcation point is used. In the case where several bifurcating branches exist
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a two-digit number is used, where the ®rst digit stands for the number of the bifurcating branch and the
second one de®nes the number of its part.

4.1. Simply-supported sandwich panels

A simply-supported sandwich panel in Fig. 3 where the vertical deformations at the edges of the core
are prevented, i.e. the shear stresses at the core edges exist, is studied (see Frostig and Baruch, 1993).
The branching diagrams of the panel appear in Fig. 4 for two locations, namely, at midspan and in the
vicinity of the right edge. As the critical buckling load at point 1, N1

cr � 9:38714 kN, is reached the
panel buckles into the wrinkling (local) mode (see Figs. 5(a) and 6(a)), with approximately 36 half waves
similar to the results determined analytically by Frostig and Baruch (1993). The bifurcation point 1 is
unstable (see Cris®eld, 1997) and the panel exhibits a snap-through response that transfer it to a stable
equilibrium state at point 4 or 5 (see Fig. 4). The displacement con®gurations corresponding to points 4
and 5 are given in Figs. 5(b) and 6(b), respectively. Thus, the snap-through response leads to
disturbance of the pure sinusoidal mode (wrinkling mode) in such a way that the amplitudes of the
vertical displacements of the facings grow toward the supports. Further increase in the load level along
the bifurcating branch B1 emanating from the point 1 is possible along the curve B11 until a stable
bifurcation point is reached, at point 6, or along the curve B12 at point 7. Note that before the
secondary bifurcations at points 6 or 7 occur �N6

bp � N7
bp � 9:40286 kN), the response of the panel is

local, see the midspan response in Figs. 4(a), 5(b) and 6(b). The displacement modes along the
bifurcating branches B2 and B3 emanating from the points 6 and 7 appear in Figs. 5(c, d) and 6(c, d).
Here the interactive mode buckling response consists of the local wrinkling mode which is coupled with
the global one. Further increase in loading along the bifurcating branches B2 and B3 leads to a gradual
reduction of the panel sti�ness (see Fig. 4). It is interesting to note that the second buckling load, N �
9:3979 kN, on the trivial equilibrium path is in close proximity to the critical buckling load, N1

cr, at the
point 1 given above (these values have been veri®ed independently using the linearized buckling analysis;
see Sokolinsky and Frostig, 1999). Thus, when the bifurcation loads are closely spaced a snapping
response at the critical load levels may occur.

An imperfection analysis of the panel has been carried out using ®ctitious distributed vertical forces
qt � 10ÿ6 kN/mm and qb � ÿqt see Eqs. (3) and (4), which follow the sinusoidal buckling pattern of
point 1. The results of the imperfection analysis are in close agreement with those of the ``perfect''
structure (see Fig. 7). The limit point 1 occurs at N1

lp � 9:38546 kN and since it is unstable the panel
exhibits the snapping behavior which carries it to a stable point, 3. A further continuation along the
stable interval 3 ± 4 follows the same behavior observed before along the curve B12 of the bifurcating
branch B1. The bifurcation point 4 occurs at N4

bp � 9:40276 kN that is close to the previous results.

Fig. 3. Lay-out of simply-supported sandwich panel with non-free core edges (basic con®guration)
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Fig. 4. Branching diagrams for simply-supported sandwich panel with non-free core edges: (a) at midspan; (b) in the vicinity of the

right edge (Ð stable and - - unstable equilibrium states).
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Note that small changes in the external loading may cause appreciable qualitative change in its behavior.
This is illustrated by Figs. 4 and 7 where the di�erence in the magnitudes of the applied loads at the
bifurcation point 1 and the limit points 2 and 3, see Fig. 4, is about 150 g �10:0015 kN), whereas it is
about 40 g �10:0004 kN) only between the limit points 1 and 3 (see Fig. 7).

If the magnitudes of the ®ctitious loads qt and qb are increased by a factor of ten, the nonlinear
response of the panel experiences some modi®cations although the basic features of the ``perfect''
behavior are still preserved (see Fig. 8). The continuation procedure along the main equilibrium path
reveals three bifurcation points 1, 2 and 3 at load levels of 9.37388, 9.37496 and 9.40103 kN,
respectively. Here, however, the ®rst bifurcating branch leads to the second bifurcation point (point 2 in
Fig. 8) along the path 1 ± 4 ± 5 ± 2 on the one hand, and to the limit point 6 �N6

lp � 9:3744 kN)
followed by a rapid reduction of the panel sti�ness on the other hand. Therefore, it can be concluded
that from the unstable bifurcation point 1 the panel snaps to point 5, then with an increase in the load

Fig. 5. Displacement patterns corresponding to the branching diagrams of Fig. 4: (a) at point 1 (to the right); (b) in range 4±6 of

part B11 of the bifurcating branch B1; (c) on part B21 of the bifurcating branch B2; (d) on part B22 of the bifurcating branch B2.
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factor l it returns to the main equilibrium path at point 2 and further on to point 3 where the third
bifurcating branch originates. Notice that the snapping response and the closely spaced bifurcation
loads, points 1 and 2, are present together once again. However, here the snap-through behavior leads
to an interactive mode response (see Fig. 9(a)), where the global buckling mode of one sine half wave
interacts with the wrinkling pattern induced by the ®ctitious loading. The global mode diminishes
gradually along interval 5 ± 2, as expected, since the main equilibrium path is characterized by a local
response only. The local response along the interval 2 ± 3 closely resembles that of the ``perfect'' panel
along interval 5 ± 7 (see Fig. 4), where the amplitudes of the vertical displacements are larger toward the
supports. The interactive mode response along the third bifurcating branch starting from point 3 is also
similar to the behavior of the ``perfect'' panel along the bifurcating branch B2 Figs. 6(c) and (d). It can
be concluded that the sandwich panel discussed is an imperfection-sensitive structure. This conclusion
naturally follows from the results of the imperfection analysis on the one hand, and from the instability
of the equilibrium state at the bifurcation point 1 (see Fig. 4), on the other hand.

Fig. 6. Displacement patterns corresponding to the branching diagrams of Fig. 4: (a) at point 1 (to the left); (b) in range 5±7 of

part B12 of the bifurcating branch B1; (c) on part B31 of the bifurcating branch B3; (d) on part B32 of the bifurcating branch B3.
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Fig. 7. Results of imperfection analysis vs. the ``perfect'' response for simply-supported sandwich panel with non-free core edges,

jqtj110ÿ6: (a) at midspan; (b) in the vicinity of the right edge (Ð ``perfect'' response; -. stable and - - unstable equilibrium states

for imperfection analysis).
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Fig. 8. Results of imperfection analysis (bold lines) vs. the ``perfect'' response (thin lines) for simply-supported sandwich panel,with

non-free core edges, jqt110ÿ5: (a) at midspan; (b) in the vicinity of the right edge (Ð stable and - - unstable equilibrium states)
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Fig. 9. Zooms in the vicinity of the bifurcation point 2 of Fig. 8: (a) at midspan; (b) in the vicinity of the right edge.
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Fig. 10. Simply-supported sandwich panel with free core edges: (a) con®guration; (b) displacement pattern on part B2 of the bifur-

cating branch; (c) displacement pattern on part B1 of the bifurcating branch; (d) branching diagrams at midspan for the ``perfect''

(thin lines) and imperfect (bold lines) structure (ÐÐ stable and - - unstable equilibrium states).
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A strong qualitative change is achieved by merely removing the restrictions on the vertical
displacements of the core at the ends of the panel (see Fig. 10(a)); thus the edges of the core are free of
shear stresses. The resulting subcritical pitchfork bifurcation (see Seydel, 1988) appears in Fig. 10(d).
Notice that the second bifurcation load �N � 7:0738 kN) is now quite di�erent from the critical buckling
load, Ncr � 6:76439 kN. The critical buckling behavior in this case consists of a nonsinusoidal buckling
mode where the deformations are con®ned to the end zones of the panel and are also known as
``localized buckling mode'' (see Figs. 10(b) and (c)). The critical load level is much lower when compared
with the sinusoidal one, namely Nsin=Ncr � 1:3877: The results of the imperfection analysis are shown in
the branching diagrams of Fig. 10(d) with thick lines. They have been determined with the aid of the
®ctitious edge couples induced by small longitudinal forces, DN110ÿ6 kN, applied at the facings.

The transversely ¯exible core has a pronounced e�ect on the behavior of sandwich structures (see
Frostig et al., 1992; Frostig and Baruch, 1993; Sokolinsky and Frostig, 1999). The panel in Fig. 11(a)
buckles into the global mode of Figs. 11(b) and (c) exhibiting the subcritical pitchfork behavior �Ncr �
12:5472 kN); see Fig. 11(d). Notice that the ratio Ec=Gc coincides with its counterpart for the basic lay-
out. The critical buckling response here can be readily compared with that determined analytically and
represented in a graphic form by Frostig and Baruch (1993). The important distinctive feature of the
present nonlinear response is the sharp drop in the panel sti�ness at some values of the load factor l:
The results of the imperfection analysis are determined with the aid of the ®ctitious uniform load qt of
the order of 10ÿ6 kN/mm.

The nonlinear behavior of the sandwich panel with edge beams appears in Fig. 12. The edge beams
prevent the formation of the wrinkling waves near the supports and cause the amplitudes of the vertical
displacements of the facings to grow toward the ¯exible center (see Figs. 12(b) and (c)). The critical
buckling load, Ncr � 9:40102 kN, is close to the secondary bifurcation points of the ®rst example (points
6, 7 in Fig. 4), but here the bifurcation point is unstable (see Fig. 12(d)). In the next case the location of
the supports through the thickness of the panel has been changed (see Fig. 13(a)) and the branching
diagrams possess a limit point at Nlp � 8:29054 kN (see Figs. 13(d) and 14 with end shortening
diagram). It is important to notice that since the sandwich panel is a compound structure, the wrinkling
of the facings does not necessarily re¯ect buckling of the whole structure, (see Fig. 13(b) and (c)). Here
an interactive mode nonlinear response consisting of overall and wrinkling modes exists.

4.2. Cantilever sandwich panels

The simply-supported boundary conditions of the basic lay-out are replaced by the clamped-free
boundary conditions (see Fig. 15(a)). Here the external longitudinal forces are exerted on the face sheets
only, and the boundary conditions at the loaded edge consist of the longitudinal forces of magnitude
N=2, null bending moments and shear resultants in the upper and lower faces as well as null shear
stresses in the core. Two cantilever panels that di�er only in their heights have been investigated (see
Figs. 15(a) and 16(a)). The critical buckling mode of the panel with the height of h � 20:05 mm is
global, (Figs. 16(b) and (c)), while the critical buckling mode of the panel with the augmented height,
h � 23:05 mm, is localized, (Fig. 15(b) and (c)). It is interesting to note, however, that the situation is
opposite for the second buckling mode.

The cantilever panel with the augmented height, see Fig. 15(a), exhibits the subcritical pitchfork
behavior, and is an imperfection-sensitive structure, see Fig. 15(d). The imperfection analysis has been
carried out with the aid of two ®ctitious concentrated moments of the order of 10ÿ5 kN mm applied to
the facings at the loaded edge, see Eq. (7).

The cantilever panel with the height of the basic con®guration (see Fig. 16(a)), yields a supercritical
pitchfork response (see Fig. 16(d)). There is an exchange of stability from the trivial equilibrium path to
the bifurcating branch at the bifurcation point. The imperfection analysis, accomplished with the aid of
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Fig. 11. Simply-supported sandwich panel with non-free core edges and a sti�er core: (a) con®guration; (b) displacement pattern on

part B1 of the bifurcating branch; (c) displacement pattern on part B2 of the bifurcating branch; (d) branching diagrams at mid-

span for the ``perfect'' (thin lines) and imperfect (bold lines) structure (Ð stable and - - unstable equilibrium states).
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Fig. 12. Simply-supported sandwich panel with edge beams: (a) con®guration; (b) displacement pattern on part B2 of the bifurcat-

ing branch; (c) displacement pattern on part B1 of the bifurcating branch; (c) branching diagrams at midspan (Ð stable and - - un-

stable equilibrium states).
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Fig. 13. Simply-supported sandwich panel with edge beams and eccentric supports (a) con®guration; (b) displacement pattern; (c)

interactive response at midspan; (d) branching diagrams at midspan
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the ®ctitious uniform load qt110ÿ6 kN/mm, reveals that the sandwich panel in this case is not
imperfection sensitive. The same conclusion can be reached regarding the stable equilibrium state at the
bifurcation point.

5. Conclusions

The geometrically nonlinear analysis of the longitudinally loaded sandwich panels with a transversely
¯exible core, based on the closed form high-order sandwich panel theory (HSAPT), is presented. The
path-following procedure developed performs well and can be e�ciently used to predict the nonlinear
response of the sandwich panels with a transversely ¯exible core for practical applications.

The nonlinear analysis of the various panels reveals that the wrinkling of the facings does not
necessarily means that the panel as a whole has buckled since the the sandwich panel is a compound
structure. It actually deforms in such a way that the triggering overall mode gradually transforms into

Fig. 14. End shortening in case of an edge beam (see Fig. 13).
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Fig. 15. Cantilever sandwich panel with augmented height: (a) con®guration; (b) displacement pattern on part B1 of the bifurcating

branch; (c) displacement pattern on part B2 of the bifurcating branch; (d) branching diagrams at the free end for the ``perfect''

(thin lines) and imperfect (bold lines) structure (Ð stable and - - unstable equilibrium states).
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Fig. 16. Cantilever sandwich panel: (a) con®guration; (b) displacement pattern on part B2 of the bifurcating branch; (c) displace-

ment pattern on part B1 of the bifurcating branch; (d) branching diagrams at the free end for the ``perfect'' (thin lines) and imper-

fect (bold lines) structure (Ð stable and - - unstable equilibrium states).
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the interactive mode displacement con®guration along the same equilibrium path. The special features of
this response are caused by the interaction of the face sheets with the transversely ¯exible core.

The stability analysis demonstrates that the nonsinusoidal modes con®ned to the support zones of the
panel (localized modes) may occur at critical loads much lower than those predicted on a basis of
assumed sinusoidal modes. Such localized behavior is not amenable to the approaches based on the
decoupling of modes techniques.

The nonlinear study reveals that variations in the geometry of the sandwich panel and in its boundary
conditions as well as in the mechanical properties of its constituents Ð individually and/or in
combination Ð may lead to qualitative change in the panel behavior. Such a change manifests itself as
shifting of the panel response from an imperfection-sensitive ``shell-wise'' response to an imperfection-
nonsensitive ``plate-wise'' one. Consequently it is not known a priori, before the nonlinear analysis is
conducted, which category of instability the structure belongs to Ð imperfection-sensitive or
imperfection-nonsensitive. This feature does not exist in ordinary solid beams/panels used in engineering
practice and may suggest the introduction of some knock-down factors in the design of sandwich panels
with a transversely ¯exible core.
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